Enabling State Dependent Priority Service By Using Pricing Mechanisms That Encourage Users To Jump The Queue

Avi Giloni Sy Syms School of Business, Yeshiva University

> Phil Troy Les Entreprises TROYWARE

Background

- Many many years ago
 - · When organizations charged internal users for computing
 - There was a lot of interest in pricing mechanisms
 - To ensure that computing resources were effectively used
- Then personal computers came along
 - Everyone got their own
 - The idea of charging for computing lost its luster

Background

- But, organizations still provided lots of services, e.g. I.T.
 - · Of a different nature
 - Usually involving support, rather than computing resources
 - · And different users got different benefits from that support
 - · And incurred different waiting costs while waiting for that support
- And thus there was still a need for controlling:
 - Who would get these services
 - · In what order they would get them
- Because these resources are still expensive

Background

- Thus we consider organizational service facilities where:
 - Internal users bring jobs
 - Each group of users receives a specific gross benefit when their job is completed
 - Each group of users incurs waiting costs in a specific way

Our Goal

- Find a pricing mechanism that can be used to control who gets served and in what order
- · Ideally, we would like that control mechanism to work for:
 - · Complex processes
 - · Arbitrary inter-arrival time distributions
 - · Arbitrary processing time distributions

Related Research

- Naor (1969) The Regulation of Queue Size by Levying Tolls.
- Mendelson (1985) Pricing Computer Services: Queueing Effects.
- Mendelson & Whang (1990) Optimal Incentive-Compatible Pricing for the M/M/1 Queue.
- Afeche and Mendelson (2004) Pricing and Priority Auctions in Queueing Systems with a Generalized Delay Cost Structure.

Ideal Approach

- · Combine
 - State dependent pricing a pricing mechanism that changes as the number of customers or jobs being served or waiting for service, changes
- With
 - Multiple waiting lines (queues) each having a different priority

State Dependent Pricing

- Why we shouldn't use state dependent pricing:
 - It makes life difficult for users?
 - Prices will be harder to compute?
 - It just seems too complex?

State Dependent Pricing

- Why we should use state dependent pricing:
 - · Individually optimal behavior may not be "socially" optimal
 - Prices can be used to align individual behavior to be "socially" optimal
 - Prices can vary with the number of jobs in the facility
 - Low prices can be used to encourage users to submit work when the facility is not busy
 - High prices can be used to discourage users from submitting work when the facility is busy

State Dependent Pricing

- To develop a preliminary model for state dependent pricing we assumed that:
 - · User interarrival times are exponentially distributed
 - User service times are exponentially distributed
 - Users incur waiting costs at a non-negative rate

- We define:
 - K the number of user groups
 - · k the user group number
 - · λ_k the arrival rate of group k users
 - \cdot b_k the gross benefit that group k users receive for job processing
 - w_{i,k}- the expected waiting cost that group k users will incur if their job is accepted when there are already i users in the facility

- We also define:
 - $\begin{tabular}{ll} & \beta_{i,k} \end{tabular} \end{tabular} \end{tabular} \end{tabular} \beta_{i,k} \end{tabular} \end{tabular} the integration of the second s$
 - $\xi_{i,k}$ the fraction of group k users whose jobs are accepted when there are already i users in the facility [0,1]
 - I the maximum number of users allowed in the facility
 - μ the rate at which a server processes jobs
 - μ_i the rate at which the facility processes jobs when there are i users in the facility

- We observe that when there are i users already in the facility:
 - · The expected user admission rate is $\Sigma_k \lambda_k \xi_{i,k}$
 - · The expected rate of net benefit is $\Sigma_k \lambda_k \xi_{i,k} \beta_{i,k}$

- We also observe that the problem of determining the optimal prices can be formulated and solved
 - · As a non-discounted continuous time policy iteration problem
 - With the following value determination equation $\gamma = \sum_{k} \lambda_{k} \xi_{i,k} (\beta_{i,k} - \nabla v_{i}) + \mu_{i} \nabla v_{i-1}$
 - · Where:
 - · γ is the rate at which the facility generates net benefit
 - \cdot v_i is the relative value of there being i jobs in the facility
 - ∇v_i is the opportunity cost of admitting a user when there are already i customers in the facility, i.e. $v_i v_{i+1}$

- When formulated this way, the optimal policy
 - Explicitly specifies the state dependent opportunity costs
 - · Admits users whose net benefit is greater than or equal to these opportunity costs
 - Can be implemented by charging tolls equal to these state dependent opportunity costs
 - Will tend to keep the facility busy
 - Will tend to keep the queue from becoming large
 - Can easily be computed via policy iteration since there are only I tri-diagonal value determination equations

- Unfortunately, this may not work so well when:
 - There are two groups of users
 - Group 1 has high gross benefits and waiting costs and arrives at a low rate
 - Group 2 has low gross benefits and waiting costs and arrives at a high rate
- This can result in 2 possibilities:
 - We charge higher tolls and preclude group 2 users
 - We charge lower tolls and get less net benefit from group 1 users
- · What we would ideally like is to process group 1 users before group 2 users
- This suggests the use of . . .

Priority Queues

- The idea behind priority queues is that:
 - There can be several queues
 - · Jobs in lower numbered queues are processed in first come first served order before jobs in higher numbered queues
 - Users that incur waiting costs at the highest rate wait the shortest amount of time
- (Note that we are not considering the use of pre-emption)

- For reference purposes only, the new notation is:
 - i a vector containing the number of customers in each queue and the number of customers currently being served
 - When the facility was in state **i**
 - $a(\mathbf{i},q)$ the state after a customer is accepted to queue q
 - d(i) the state after serving a user is completed
 - · $\beta_{i,k,q}$ the net benefit of group k users accepted to queue q
 - · $\xi_{i,k,q}$ the fraction of group k users accepted to queue q

- For reference purposes only, the new value determination equations are:
 - $\cdot \quad \gamma = \sum_{k} \lambda_{k} \xi_{\mathbf{i},k,q} \left(\beta_{\mathbf{i},k,q} \mathbf{\nabla} V_{\mathbf{i},\mathbf{a}(\mathbf{i},q)} \right) + \mu_{\mathbf{i}} \mathbf{\nabla} V_{\mathbf{i},\mathbf{d}(\mathbf{i})}$
 - · Where:
 - $\cdot \gamma$ is the rate at which the facility generates net benefit
 - \cdot v_i is the relative value of the facility being in state i
 - ▼ v_{i1,i2} is the opportunity cost of making a transition from state i1 to state i2, i.e. v_{i1} v_{i2}

- The optimal policy when adding priority queues:
 - Explicitly determines the state dependent opportunity costs
 - Admits customers to the queue that maximizes the positive difference between their net benefit and these opportunity costs
 - Can be implemented via tolls
 - Will likely have higher tolls for higher priority queues than for lower priority queues
 - Will tend to keep the facility busy

- · Limitation (1) How to determine expected waiting costs
- This affects decision as to which queue to join
- Consider a situation in which:
 - A user with moderate waiting costs arrives to the facility
 - There are very few jobs in the first or second queue
 - · If user joins first queue, most likely higher toll
 - If user joins second queue:
 - · Lower tolls
 - Length of wait is a function of the queue subsequent users join, which is a function of which queue this user joins, . . .

- · Limitation (2) Dealing with non-linear waiting costs
- Consider a situation in which:
 - The rate at which a user incurs waiting costs decreases in time
 - The user initially joins queue with highest priority
 - The rate at which the user incurs waiting cost decreases
 - The user should switch to a lower queue at this point in time
 - This mechanism does not allow for this

- · Limitation (3) Variability in actual net benefits
- · In first come first served policy, net benefits variability:
 - User's service time
 - Prior customers' service times
- In priority queue policy, net benefits variability for users in secondary queues:
 - User's service time
 - Prior users' service times
 - Service times of subsequent users that join higher priority queues

- · Limitation (4) How solve policy iteration equations
- First come first serve policy:
 - Number of equations O(I)
 - · Tri-diagonal
- Priority queue policy:
 - Number of equations $O(I1 \cdot I2 \cdot I3 \cdot \cdot \cdot)$
 - No longer tri-diagonal

- The Idea
 - Only have one queue
 - Allow users to move around within that queue
 - Users that benefit from move pay users that are disadvantaged by move
 - Treat non-linear waiting cost functions as piece-wise linear waiting cost functions

- For reference purposes, new notation:
 - i a vector containing the number of customers in the queue having each (piece-wise linear) waiting cost function, ordered from highest to lowest
 - When the facility is in state **i**
 - · $a(\mathbf{i},k)$ the state after a group k customer is accepted
 - d(i) the state after serving a customer is completed
 - $\cdot \quad \beta_{i,k} \quad \ \ \, \text{- the net benefit of a group k customers is accepted, after compensating other customers for being moved } \\$
 - $\cdot \xi_{i,k}$ the fraction of group k customers accepted

- For reference purposes only, the new value determination equations are:
 - $\cdot \quad \gamma = \sum_{k} \lambda_{k} \xi_{\mathbf{i},k} \left(\beta_{\mathbf{i},k} \mathbf{\nabla} \mathbf{V}_{\mathbf{i},\mathbf{a}(\mathbf{i},k)}\right) + \mu_{\mathbf{i}} \mathbf{\nabla} \mathbf{V}_{\mathbf{i},\mathbf{d}(\mathbf{i})}$
 - · Where:
 - $\cdot \gamma$ is the rate at which the facility generates net benefit
 - \cdot v_i is the relative value of the facility being in state i
 - V_{i1,i2} is the opportunity cost of making a transition from state i1 to state i2, i.e. v_{i1} v_{i2}

- We observe that this pricing mechanism is very similar to the priority queue pricing mechanism in that it:
 - Explicitly determines the state dependent opportunity costs
 - · Admits customers to the appropriate position in the queue if their expected net benefit exceeds these opportunity costs
 - Can be implemented via tolls
 - Will tend to keep the facility busy
 - Will allow accumulation of customers with lower waiting costs for processing when other customers are not in the facility

- But:
 - This approach addresses the limitation (1) of determining expected net benefit
 - Because it can be done in same manner as for the first come first served policy

- This approach also addresses limitation of not being able to handle non-linear waiting costs
 - When rate at which waiting cost changes, customers may jump the queue
 - Users with the highest waiting are always at the front of the queue

- Furthermore, this approach addresses variability in net benefits
 - Variability is minimized because customers compensate or are compensated for being moved

- Finally, this approach partially addresses the computational complexity of solving policy iteration equations
- The complexity still exists, but:
 - The equations are fairly sparse
 - They appear amenable to value iteration
 - It seems likely that solution will be relatively insensitive
 - · It might be possible to solve in a Just In Time manner
 - · Initial values can be approximated

Our Goal

- Find a pricing mechanism that could be used to control who gets served and in what order
- · Ideally, we wanted that pricing mechanism to work for:
 - · Complex processes
 - · Arbitrary processing time distributions
 - · Complex processes

Our Results

Found a plausible pricing mechanism for controlling who gets served and in what order

Need For Future Work

- Computation
- Extension to general service time distributions
- Extension to more complicated processes